UNDERSTANDING MALWARE

An introduction to the wonderful world of malware

Max ‘Libra’ Kersten
Security Through Explanation

Abstract

This paper is an introduction into the world of malware. The lay-out of the
paper is suited for both readers with and without knowledge in this field. In
each chapter, each section gets a bit more technical, allowing the user to fully
understand the concept at first, before moving on to the more technical
explanation. Each chapter explorers a different part of the whole malware
ecosystem. In later chapters, multiple parts are combined to give a deeper
insight to malware, and its development, as a whole.

If you have any questions, feel free to e-mail me at info@maxkersten.nl.

mailto:info@maxkersten.nl

Table of Contents

JAN 0 1 o = ot o 1
L= 1 0] KT e) R o] 0} =1 1 U 2
e €] =1L TR RSO PRRRURRRRRRRNt 4
B XA DS e et e et e et e e et e e e e abe e e e e aba e e e e abaeeeaaraaeeatraeeeaaaraeeeeanraens 4
WV QNNAECTY ettt et e ettt e e e ettt e e e e ta e e e e e tbee e e e tbaeeeetraeeeeassaeaeassaeeeessaeeeessaeeesnsraeaeanes 4

N OT P TV A ettt e ettt e e e e tte e e e eetb e e e e e etbaeeeetbaeeeetbaeeesassaeeeeasraeaesnns 5
Ransomware in the San FrancisCoO Metro SYSTEMS .. i 5
ATM malware updated for WINAOWS 10 .iiiiiiiiiieees 5
[IESTSISYo) o I L<T= 16 0 PP T TR TR oo 5
TYPES OF IMAIWATE ettt e et e e e e tae e e eebae e e e taeeeeetreeesetreeeennseeas 6
AN it Yol SV A o1 0] £ TR 8
ATLACK T ECNNIGQUES ..ttt e et e e et e e e etae e e eetbaee e eeabaeeeeebeeeeennreeeeenteeas 10
Payloads and the INTECTION PrOCESS ...t 12
ANTI-VIIUS SUITE QFrCITECTUINE oo ee e 13
Updating the signature databasSe ... 13
Self-MOAITYING MAIWAIE .. e e e e e r e e e e s e e aabaeeeeeas 14
MaAIWAIE AT CHITECIUIE et e e e e e e s e e e ssbaaee e e e e e e e snnreaes 15
YA gt g TRl o1 o BT <R 15

| gl e] Y] o) X =Te I 0 4 F= 1 ATV 1 €T 15
OliIgOMOIPNIC MAIWAIE et e e ebae e e e etree e e eabeee e enareeas 15
POIYMOIPRNIC MAIWAIE it e e e e e s s e abb e e e e e s sssaaaaeeeees 16

(VK< otz [a aTe g o] a1Tot 8 a k=1 ATV 2= L= TRTTrr 16

(@] o) 1 UESTot=) ol [0 o I TEE R 16
DYCT-Te I atoTe [<IT 1T<] @ vl T o IR 16
REOIdEriNg SUDFOULINES ..oiiiveeeieteee ettt eetae s e eeabae e e seabaesesabaesesnnsaeeeens 16
CoNtrol FIOW OBDTUSCATION . ..ciii ittt e e s st e e e e s s s ssaabaereeees 17
(= [l ST £ PP 17

[g Lo Y4 0 [0 o TR 18
AN g L =T o kol BV A U ISR 0 LTz T DR 19

ANti-virtualisation TECHNIQUES ...t e et e et e e e e earee e 19

Anti-reverse engineering tECNNIQUES.......cocii ettt e s e e rate e sene e 19
ANti-SandboX TECHNIQUES ... 20
Difference between virtualisation and sandboXiNg ..., 20
ADOUL The QUTNON oo e e e 21
Y ANl g TN VA T=Ta Lo =T =T o1 PR 22
(=101 Te e] =] o] 1Y 20N U RU NSRS URR U URRRRUPTON 23

Preface

Malware is forming a threat to all computers, regardless of their updates or the
network they are in. Security measures simply cannot stop all malicious
programs, especially when the biggest threat to a system’s safety is the user
himself. Upon opening an infected attachment or clicking on a link to a
fraudulent website, a system can already be compromised. If a company gets
infected, the consequences can be enormous; if it is a user's home PC getting
infected, this user might lose all of his pictures, documents and other
memorable files.

Obviously, prevention is better than the need to cure. In the case that you have
been targeted or you happen to get infected with malware, knowing how to
minimise the damage and clean your systems is valuable knowledge; hence the
purpose of this paper. By educating how malware works, how it acts around
the anti-virus products and how to analyse what unknown malware does, the
created environment will be safer for all users.

To understand why improved security is important for a system to be protected
against malware, some recent examples are given below to display the impact
of systems that get infected.

Examples

WannaCry

The first piece of ransomware to spread itself using a worm feature. The
exploitable service that was used was the Windows SMB service. The exploit
used exploit is dubbed EternalBlue. The vulnerability was discovered by the
National Security Association (NSA) and leaked by a group of hackers named
the ShadowBrokers. Even computers that did not have an internet connection
got infected, because the worm moved lateral in the network. One infected
computer could infect the rest of the network, regardless if the devices were
attached to the internet.

The media reported a lot about this outbreak, even though the earnings of the
campaign were marginal. The eventual cashing out was prevented by blocking
the bitcoin transaction. The amount of money obtained by the creators remains
unknown. The amount of infected devices is hard to measure, if possible at all.
The outbreak was all across the globe, so the total amount of infections ranges
in the couple of hundred thousands, if not more. The malware contained an,
accidental, Kill switch. After this switch was triggered, the global outbreak
stopped. This Kill switch was no cure, but it helped tremendously to reduce the
amount of new infections. (Sherr, 2017) (Urbelis, 2017) (US Government,
2017) (Gibbs A. H., 2017)

NotPetya

Starting in Ukraine, the NotPetya ransomware spread itself from the MeDoc
accounting software using the EternalBlue exploit, the same as the one used by
WannaCry. All the users of MeDoc had the malware on the system as it was
pushed via an update of the accounting software. Moving laterally, the infection
spread rather fast throughout dozens of companies. Similar to WannaCry, the
impact was noticed all around the world. Companies that got infected lost tens
of thousands of dollars, if not more, due to corrupt systems. The malware had
some sort of kill switch to avoid the infection. This switch was published soon
after the outbreak started. Alas, the Kill switch was local on a machine. If a
certain file existed on the machine, the malware would stop executing. Because
the Kill switch was checked for each machine, there was no global prevention.
(Bisson, 2017) (Arghire, 2017) (Cimpanu, Vaccine, not Killswitch, Found for
Petya (NotPetya) Ransomware Outbreak, 2017)

Ransomware in the San Francisco Metro systems

During the Thanksgiving weekend in 2016, customers could travel freely with
the metro for two days due to a ransomware infection on the servers. The
ransom was 100 Bitcoins, which equalled to $73,086 at that time. In total,
2112 computers were infected and 30 GB of data was allegedly compromised.
The ransomware creators threatened to leak the data if the ransom would not
be paid. (Williams, 2016) (Gibbs S. , 2016)

ATM malware updated for Windows 10

Using an external keyboard or an SMS message, the ATM malware enabled the
attacker to obtain thousands of dollars in mere minutes. It targeted Diebold
ATM machines, an ATM vendor which runs on the Kalignite Platform.
Changing a small part of the code, the malware’s attack surface could increase
to 40 different ATM vendors located in 80 different countries. (Regalado,
2017) (Beltov, 2017)

Lesson learnt

As shown in the examples above, malware is an imminent threat to all sorts of
systems. Older malware can be detected by their signature, but signatures of
new malware are unknown. To detect new or modified malware, their behaviour
is analysed with a heuristic analysis. Even updated systems are vulnerable, even
though a patched system is harder to infiltrate. To aid in the detection,
suspicious files can be analysed by manual tooling. The next chapters will
discuss the creation of the malware, the attack vectors, basic analysis methods,
the hardening of the malware and advanced analysis methods used by anti-virus
suites.

Types of Malware

Even though every piece of malware is unique, the programs fall into different
categories. In the table below, multiple sorts of malware will be discussed.
(Lord, 2012) (Barraco, 2013) (Kevin Savage, 2015) (SentinelOne, 2016)

CATEGORY

DEFINITION

ADWARE

BOTS

RANSOMWARE

BACKDOORS

ROOTKITS

Adware shows unwanted advertisements to the user on
the infected system. Adware also has the potential to
track a user’'s system. Some adware is close to spyware;
sometimes the two are intertwined. Adware is often
bundled with free or illegal software and installed
unnoticed.

Bots are pre-programmed to execute certain tasks. Some
bots are used to transform the infected system into part
of a botnet. A botnet consists of slaves (or zombies)
which are controlled by a Command & Control server
(C&C). When a system is infected, the bot awaits orders
from the C&C server to execute the pre-programmed
actions.

Ransomware locks the system until a ransom is paid. All
the file shares of the computer and those accessible by
the computer will be encrypted, excluding the essential
files for the operating system. There are two different
types of ransomware: one that locks the system
completely and one that locks the user’s files. The
currency of the ransom is usually Bitcoin, to make the
transaction as anonymous as possible. To pressure
payment, the file system is often deleted within a given
timeframe if the ransom is not paid.

A backdoor is a hidden way to access a system for the
attacker whilst staying under the radar. Using this
backdoor, the attacker can navigate through the system
and perform actions depending on the gained privileges.

A rootkit is often referred to as a backdoor, albeit a
special kind. Whereas backdoors are only used to access
a system, a rootkit has the option to execute tasks with
the root privilege.

SPYWARE

TROJAN
HORSE

VIRUSES AND
WORMS

FILE-LESS
MALWARE

Spyware spies upon the user. The functions of spyware
include — but are not limited to — logging keystrokes,
collection information on the connected drives, or
monitoring browser activity. Spyware is often bundled
with free software and installed unnoticed.

A Trojan horse obtained its name from the city in the
Greek Epos “The Trojan War", in which the horse
unloaded soldiers in the city of Troy unnoticed.
(University, 2008) Pretending to be a normal program,
the Trojan horse has a hidden agenda. The payload of
the malware could be any other type of malware to let
the attacker gain access to the system or exploit a
service.

Viruses and worms are self-spreading programs with the
ability to collect information or execute tasks. The main
difference between worms and viruses is worm’s the
ability to replicate without interaction of a user.

An existing process is injected with a malicious code
during runtime; the code is then executed from the
memory. The file of the hijacked process is not altered
nor is the malicious program persisted on anywhere but
in the memory. A reboot is enough to remove the file-
less malware, unless the malware infected other persisted
files.

Attack Vectors

Malware needs permissions to perform actions, similar to the permissions a user
needs to perform the same actions. An attacker has multiple options, which are
often referred to as vectors, to attack. The goal of an attack differs per vector.
Each vector yields a different result for the attacker. Not every possible exploit
technique is discussed for each vector. The unique component is explained,
together with a short explanation on what each vector is. (nhinkle¢, 2010)
(Atwood, 2008)

ATTACK VECTOR DEFINITION

PROCESSES A process is an instance of an executed binary.
Examples of processes are Google Chrome,
Microsoft Word or IceWeasel. A process is
initiated by a user. To exploit a process, the
stack can be smashed, the code flow can be
altered or the binary can be edited. The result of
the alteration is the execution of shellcode to
execute a given payload.

SERVICES Similar to a process, a service is an executed
binary. The difference between a service and a
process is the fact that a service is not initiated
by a user. Therefore, a service can also run
without any user being logged in on the system.
Services are generally not directly graphically
visible in the desktop environment. Services can
be used to execute shellcode, but also to spy
upon all users on a machine, instead of one user.

Important to note is the fact that the operating
system also has services which are running in the
background. These services are attack vectors as
well, but are categorised in the category
‘Operating System’ below. The services, as
described in here are services from installed
programs.

OPERATING SYSTEM

The CPU has two modes: kernel and user. In the
kernel mode, there are no restrictions. The user
mode cannot directly access the hardware or
create references in the memory. To access the
hardware or create a memory reference, a kernel
API is used, to delegate the tasks to kernel level.
Upon gaining access to the kernel, objects can
be made which cannot be directly removed by a
user initiated process; this evades most anti-virus
suites.

Attack Techniques

As explained above, there are multiple vectors which can be exploited. Every
vector has an attack surface which can be used, meaning that there are

multiple ways to breach the system’s security. The most common techniques
will be explained in this chapter. (Piscitello, 2016) (Doshi, 2006) (QNX, n.d.)

ATTACK TECHNIQUE

DEFINITION

PRIVILEGE
ESCALATION

WEB APPLICATION
EXPLOITS

LOCAL EXPLOITS

REMOTE EXPLOITS

DENIAL OF SERVICE

To fully control the system the malware is on,
the highest privilege is a necessity. With the
permissions of this privilege, files and settings
can be altered without any notice to the users
on the system. Escalation can happen in two
ways: horizontally and vertically. The first way
is to compromise accounts with the same
permissions; the latter is to compromise an
account with more privileges. Getting root or
administrator privilege is the ultimate goal,
since it grants complete access to the whole
system.

Websites can contain vulnerabilities which give
access to the database, administrator panels or
even complete control of the web server.
Remote code execution, SQL injections, Cross
Site Scripting (XSS) and Cross Site Request

Forgery (CSRF) are commonly found examples.

A local exploit is an exploit that is executed on
a computer. Examples of local exploits are
malicious e-mail attachments, rogue USB flash
drives or other files on network shares.

Remote exploits can be executed without any
previous interaction with the system, unlike
local exploits. These include Metasploit,
Immunity CANVAS or single exploits such as
the ones posted on Exploit-DB.

A service, which can be a program or an

operating system, can be stopped or crashed. A

Denial of Service (DoS) attack forces the

service to stop. A SYN-flood — another form of

denial of service — is used to flood a target
with requests. The target is not able to cope
with so many requests and comes to a halt.

10

DISTRIBUTED DENIAL
OF SERVICE

A distributed denial of service (DDoS) is a
coordinated DoS attack to one target. Every
machine has an IP address: upon flooding a
target, the abnormal behaviour is flagged and
potentially blocked. This would stop the
attack. By distributing the attack over
thousands of machines, the server cannot stop
the flood by blocking one connection. Blocking
every machine that sends a request to the
target would also deny legitimate users access
to the target. To prevent damage from the
attack, services such as CloudFlare act as a
server in between and delay the requests for
some seconds. This provides breathing room
for the target and stops the denial of the
service, even though the servers might
experience a heavy load.

11

Payloads and the infection process

The payload is the reason why the malware was created in the first place. The
delivery of the payload often compromises the system’s integrity. There are no
set ‘concepts’ for payload modules, unlike the attack techniques. Often, the
malware will create a ‘hole’ in the system that is used to re-enter the system
after the payload is executed.

At first, the exploit will achieve administrator (or root, depending on your
operating system) privileges, minimising the privilege boundary set by the
operating system and increasing the chances of correctly executing the payload.
Secondly, the malware will make sure it is persisted on the computer and
executed during or after the boot of the operating system. Lastly, the malware
will create an opening for the attacker to communicate with. This can be
anything, from sending a message to the command and control server, to
creating a fully functioning backdoor with FTP or shell access.

Different malware families and samples behave differently, especially
ransomware. Ransomware simply encrypts the files in the user folders in order
to blackmail the owner to pay for the decryption of his/her files. Zeus, a
banking Trojan, injected itself in the web browser to obtain credentials of bank
accounts. This way, the bank account of the victim could be used to transfer
money to the attacker’s bank account. These two examples are two commonly
used approaches, yet there are an unlimited number of approaches possible.
(Malwarebytes, 2017) (Cimpanu, Ransomware Was the Most Prevalent
Malware Payload Delivered via Email in Q2 2017, 2017) (TechoPedia, 2017)
(Tend Micro, 2015) (Kaspersky, 2017)

12

Anti-virus suite architecture

On the desktop platform, the read and write permissions for folders are
managed by Access Control Lists. These lists contain read, write and execute
permissions per file and folder or user group, depending on the operating
system. Limited users can read, write and execute their own files in their own
folders, whereas the administrator/root user has these permissions for all files in
all folders. (RedHat, 2017) (Microsoft, 2017)

On mobile platforms, applications are separated from each other. This provides
more security by default, because malicious applications are unable to access
the content or memory of other files. Alas, a new problem emerges due to this
set up: the anti-virus suite(s) can’'t access the memory of a malicious
application, because both are running with the same privilege. The root user for
normal applications on Android is turned off by default. Turning it on (rooting
the device) would mitigate this negative impact on the anti-virus, but it would
also allow the malware to obtain similar permissions and access any part of the
memory of any application to infest itself in, including the anti-virus suite.

Updating the signature database

If the anti-virus suite is evaded, the malware can hide itself in, depending on
the privileges of the malware, nearly any process or file. This makes the search
for malware on the computer after the infection rather difficult. Because
programs are not executed in a sandbox, exploits in one program can lead to a
complete takeover of the computer. A drive by download in a browser can lead
to a backdoor. This backdoor can be used to launch an exploit that gives
administrator privilege to the attacker. Nowadays more and more programs use
a sandbox, but not all of them are efficient or hard to fool.

Due to the limitations created by the operating system, the anti-virus scanners
are set back in time. The result of this setback is traceable to the desktop
environment in the earlier days of malware development: signature detections.
To detect signatures, the signature of the analysed malware by the analyst
needs to be added to database. This approach creates two problems.

The first problem is the fact that the malware analyst is always too late with
the analysis. People have already been infected. Even when the malware analyst
is fast and minimises the time it takes to analyse the sample and add the
signature to the database, there will be delay.

13

The second wave of delay is on the user's end. When the signature database
gets updated, the clients need to download the additional signatures before
they are safe against the latest analysed threads. In the early days of the
Internet on desktops, when people paid per megabyte and usually had to decide
to either internet or call, the delay was long.

After the Internet matured, computers are nearly permanently online. Mobile
phones however, are not as advanced. Whereas data has become cheaper of
the years, mobile phones are not always connected. Another problem with
mobile phones regarding the signature updates, is data usage. Even though a
lot of phones have 3G or 4G, not everybody has a data limit without a limit.
Therefore, updates from programs are often postponed unless the user is
connected to the Wi-Fi. In the meantime, the mobile phone is connected to the
internet and applications can be downloaded on the telephone. This gap in time
between the release of the update and the installation of the update is hard to
prevent for anti-virus suites.

Self-modifying malware

Using a language with direct access to the memory that is used, the program
can modify the contents of its own memory. An example of such a language
would be C. If one would dump the memory used by a piece of self-modifying
malware, shut the malware down and repeat the process, the result would be
two different dump files. This means that scanning the memory of the malware
is not useful anymore unless the program uses a specific algorithm or has other
detectable components. Recompiling the program as another program with
slightly different content, the hash of the malware is also changed. Starting the
newly compiled malware and deleting the old malware would remove some of
the evidence that the previous version was executed on the system. (Dalasta,
2011)

A lot of detection mechanisms of anti-virus suites are negated using self-
modifying malware. The biggest reason why it isn't used on a broad scale, is
the complexity to create such a piece of malicious software. Even if a malicious
engineer has the knowledge, the return of investment of the malware is not
worth it. The simple techniques continue to work because users are still the
weakest link.

14

Malware Architecture

Knowing how malware operates and what vectors are targeted, a piece of
malware can be developed to exploit a system. When a program is compiled,
the code gets converted into assembly language. Using a decompiler, the
original source can (partially) be retrieved unless the software has been
obfuscated, packed or encrypted. Otherwise, the decompiled output might be in
the language of the original code, but the code can be messy and not fully
decompiled. In this chapter, the architecture of malware and common disguise
techniques will be discussed.

Architecture

In the early days of malware, the program was spread and anti-virus suites
would perform analysis based on file signatures. The signature of a file is
unique, so the file system can scanned using this technique. To scan, the anti-
virus suite starts by generating signatures for files on the computer and
comparing them to the signature database. If there is a match, the file is
malicious, if not, the file is not known. This detection method, also known as
blacklisting, is too slow. Only already known malware can be detected. To
prevent and evade detection, malware creators thought of different ways to
stay undetected. (Schiffman, A Brief History of Malware Obfuscation: Part 1 of
2, 2010) (Schiffman, A Brief History of Malware Obfuscation: Part 2 of 2,
2010) (Yim, 2010)

Encrypted malware

Using encryption to hide the inner functionalities of the malware avoids
detection by anti-virus suites. Using a different generated key in the algorithm,
the signature differs for each version. This evades the anti-virus’ signature
detection. The encrypted asset is decrypted during runtime and the malware is
then executed. The problem with this technique, however, is the decryption
method. Upon decompiling the malware, the decryption function can be
retrieved. The anti-virus suite can use this technique to decrypt files during the
scan, revealing the inner workings of the malware. This leads to the detection
of the malware.

Oligomorphic malware

To mitigate the negative effects of the encryption method, oligomorphic
malware was introduced. The difference with the encryption method is small:
the decryption function is changed. The amount of possibilities for the
decryption function was, however, limited: only a couple of hundred options
were available.

15

Polymorphic malware

In return, polymorphic malware was an improvement because of the countless
possibilities of the decryption function. This removed the possibility to defeat
the encryption, since every version had another decryption method. The anti-
virus companies reacted on this by using a technique called ‘sandboxing’. The
malware is executed in a virtual machine. The signature of the decrypted
malware is located in the memory during runtime. The signature of this
malware in the memory is compared with the signature database. Other factors
started to come into play: suspicious behaviour would also be flagged. Based on
these two, the scanned files would be classified as either legitimate or
malicious.

Metamorphic malware

The difference between polymorphic- and metamorphic malware is small, yet
important. To avoid the sandbox signature detection, not only the decryption
method is changed, but also the inner workings of the malware. This creates a
new signature for every version, letting the malware spread undetected.

Obfuscation

To prevent reverse engineers from analysing the malware, malicious coders
often use a technique called obfuscation. Simply put, the code is reformed and
scrambled to make it unreadable for humans, but readable for a computer. In
the rest of this chapter, specific techniques will be described and analysed.
(Yim, 2010) (Schiffman, A Brief History of Malware Obfuscation: Part 1 of 2,
2010) (Schiffman, A Brief History of Malware Obfuscation: Part 2 of 2, 2010)

Dead code insertion

To prevent analysis, the code can be hidden in plain sight by simply adding
thousands of lines of garbage code. This code distracts the attention of the
reverse engineer, who needs to find out what the inner working of the malware
is. This technique is based on the known technique ‘hiding in plain sight’.

Reordering subroutines

Changing the order of the program also changes the flow of the program.
Assuming that a program has n subroutines, the total amount of possibilities
equals n! (n factorial). If each version has a different function flow, the reverse
engineer has to find the structure again in each sample.

16

Control flow obfuscation

Obfuscating the control flow of a program can cause a failure upon
decompilation. Simply put, the amount of calls between functions and options
are too much to decompile, crashing the decompiler. This results in the failure
to read the code of a function, or even a whole program. Instead of the control
flow graphs and pseudo code functions, the reverse engineer is forced to work
with assembly, which is a lot more time consuming.

Packers

Often also referred to as ‘loaders’ or ‘droppers’, loaders are programs which
contain a program in its resource file. During runtime, the loader decrypts the
actual program and loads it into the memory. This technique is often used to
prevent anti-virus inspection, because the loader is not considered malicious by
the anti-virus. The other file the anti-virus can see, is the encrypted asset,
which is not malicious either. A dropper downloads the malicious binary from
the web. This way, the anti-virus can not even scan the malicious binary before
the execution, because it is not on the device. The dropper could download a
loader, which executes the actual malware. (Schiffman, A Brief History of
Malware Obfuscation: Part 2 of 2, 2010) (Lau, 2012) (Malwarebytes Labs,
2016)

17

Encryption

Frequently used to avoid static detection, encryption remains a strong way to
prevent analysts from taking a peek at the malware. Generally, there are two
types of encryption found in malware.

The first way is the creation of an algorithm by the author self. Often, the idea
behind this is simple: “If | use an unknown algorithm, it will be really hard to
figure out what is being done during the encryption and decryption processes”.
Alas, this is a fallacy. The new technique hasn’'t been tested in the wild and
often contains weaknesses which allows the reverse engineer to fully decrypt the
data. Using a modern encryption standard, such as 256-bit AES encryption, is
the second approach. This technique is rather hard, if not impossible, to beat,
if it is correctly implemented. Luckily for security researchers, malware authors
are quite often mistaken and misconfigure the malware's encryption. (Delrue,
2016) (Arora, 2012)

18

Anti-anti-virus measures

Evading an anti-virus suite is surely possible using certain techniques.
Depending on how big of a threat the malware opposes out in the wild, the
anti-virus makers respond adequately. Avoiding heuristic analysis can become a
complex task, especially if one is writing all the code without using an
automated tool. Writing these steps without said tool, the chances to avoid
detection increase, as does the required technical knowledge for the author.
(Bachaalany, 2015)

Anti-virtualisation techniques

Often, malware is analysed in virtual environments because a single computer
can analyse a malware sample, regardless where the reverse engineer is: in an
airplane, at work or in the train. With the use of a physical machine, the
reverse engineer would need an additional machine to execute the sample on.
To avoid analysis, the malware can try to detect if the environment in which it
is executed, is a virtual one. A few options to detect a virtualised system could
be to check the name of drivers, the size of the hard disk drive, the movement
of a mouse, the key presses on a keyboard or checking if the sleep function is
patched.

Evading a virtualised system makes analysis harder and delays the time before
the sample is analysed. This, in turn, delays the time until the disinfectant
routine is created by the anti-virus company which increases the timespan in
which the malware is undetected.

Anti-reverse engineering techniques

Evading a virtual system aids in evading mass and/or automatic detection, it is
still possible for a reverse engineer to analyse the malware. Causing a
decompiler to crash or malfunction would make the analysis harder, if not
impossible depending on the knowledge of the analysist.

A technique that is commonly used is the attachment of a debugger to the
malware by the malware as a first action. Since a program can only be
debugged once, the reverse engineer can’'t debug the malware without patching
the first instructions. Other techniques that are often used are the obfuscation
techniques that have been described earlier.

19

Anti-sandbox techniques

A sandbox is an, often temporary, environment created by the anti-virus suite,
in which a program is executed just before it is executed on the physical
machine. The anti-virus suite analyses the behaviour of the program in mere
seconds and deems the executable either safe or unsafe. If the outcome of the
analysis is unsafe, the user will receive a warning and the file will be placed in
quarantine. If the result is safe, the program will be executed on the machine.

In the early days of malware development, the sandboxes executed the
instructions as if they were ran on a normal computer. The abuse of the sleep
function alone, was sufficient to evade the sandbox. To avoid this, the sleep
function was sped up in some sandboxes. Nowadays, processors have become
increasingly fast, meaning that a second of time in the sandbox can handle
more instructions than was possible before. The instructions of most programs,
especially malware, have increased less than the speed with which the processor
executes instructions, favouring the outcome of sandbox test in the anti-virus’
perspective.

Other known techniques to evade the sandbox is to call upon non-existing files
or use barely ever used instructions. Calling upon a non-existing file would give
a handle in the memory to the program. A sandbox does not have time to
actually load the file, so a fake handle is created. If the program would call a
file that it knows does not exist, any given handle would confirm the existence
of a sandboxed environment. Since the sandbox is an emulated environment,
only common instructions are implemented. Instructions that are barely used
because of their age or inefficiency will not be implemented. Calling such an
instruction will cause the sandbox to malfunction and result in a time out of
the sandbox. The program is then free to executed on the normal machine.

Difference between virtualisation and sandboxing

Even though a sandbox is a virtualised system, there is a subtle difference in
usage. A virtualised system, such as a virtual machine, is a complete operating
system which allows the user to interact dynamically with the system. A
sandbox is a closed environment which does not allow input from the user. The
environment in the sandbox also differs from the normal virtual machine.
Certain functions might be altered, such as the sleep function. The sleep
instruction(s) might be skipped to avoid a sleep trap. Upon requesting a library,
the handle that is passed to the program is an emulated one, to avoid the
loading time.

These differences are the reason that both systems, though technically the
same, are explained as if they are different.

20

About the author

My name is Max ‘Libra’ Kersten and | have an interest in offensive security. To
stop current and future attacks, one should think like an attacker. The anti-
virus and anti-malware branches will always be too late to stop malware from
infecting users. By anticipating what the malicious coders might do, the delay
can be minimised.

21

Acknowledgements

I'd like to thank Pham Duy Phuc for the clarification he's given me whenever |
had a problem with a technical aspect. Additionally, I'd like to thank H. Cao for
reviewing the English language in the early stages of the paper.

22

Bibliography

Arghire, |. (2017, 06 29). NotPetya - Destructive Wiper Disguised as Ransomware. Retrieved from
Security Week: http://www.securityweek.com/notpetya-destructive-wiper-disguised-
ransomware

Arora, M. (2012, 07 05). How secure is AES against brute force attacks? Retrieved from EETimes:
http://www.eetimes.com/document.asp?doc_id=1279619

Atwood, J. (2008, January 3). Understanding User and Kernel Mode. Retrieved from CodingHorror:
https://blog.codinghorror.com/understanding-user-and-kernel-mode/

Bachaalany, J. K. (2015). The Antivirus Hacker's Handbook. Indianapolis, Indiana: John Wiley & Sons,
Inc.

Barraco, L. (2013, December 10). What are the most common types of malware? Retrieved from
AlienVault: https://www.alienvault.com/blogs/security-essentials/what-are-the-most-
common-types-of-malware

Beltov, M. (2017, January 13). New Variant Ploutus Malware Identified. Retrieved from
BestSecuritySearch: https://bestsecuritysearch.com/new-variant-ploutus-malware-
identified/

Bisson, D. (2017, 06 28). NotPetya: Timeline of a Ransomworm. Retrieved from TripWire:
https://www.tripwire.com/state-of-security/security-data-protection/cyber-
security/notpetya-timeline-of-a-ransomworm/

Cimpanu, C. (2017, 08 17). Ransomware Was the Most Prevalent Malware Payload Delivered via
Email in Q2 2017. Retrieved from BleepingComputer:
https://www.bleepingcomputer.com/news/security/ransomware-was-the-most-prevalent-
malware-payload-delivered-via-email-in-q2-2017/

Cimpanu, C. (2017, 06 27). Vaccine, not Killswitch, Found for Petya (NotPetya) Ransomware
Outbreak. Retrieved from BleepingComputer:
https://www.bleepingcomputer.com/news/security/vaccine-not-killswitch-found-for-petya-
notpetya-ransomware-outbreak/

Dalasta, D. (2011, 11 21). Writing Self-modifying Code Part 1: C Hello world with RWX and in-line
assembly. Retrieved from Infosec Institute: http://resources.infosecinstitute.com/writing-
self-modifying-code-part-1/

Delrue, G. (2016, 12 26). Was AES-256 cracked or not? Retrieved from Quora:
https://www.quora.com/Was-AES-256-cracked-or-not

Doshi, S. S. (2006, April 27). Five common Web application vulnerabilities. Retrieved from Symantec:
https://www.symantec.com/connect/articles/five-common-web-application-vulnerabilities

Gibbs, A. H. (2017, 05 12). What is WannaCry ransomware and why is it attacking global computers?
. Retrieved from The Guardian:
https://www.theguardian.com/technology/2017/may/12/nhs-ransomware-cyber-attack-
what-is-wanacrypt0r-20

Gibbs, S. (2016, November 28). Ransomware attack on San Francisco public transit gives everyone a
free ride | Technology | The Guardian. Retrieved from The Guardian:

23

https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-
muni-ransomeware

Kaspersky. (2017, 09 06). Zeus Trojan Malware. Retrieved from Kaspersky:
https://usa.kaspersky.com/resource-center/threats/zeus-trojan-malware

Kevin Savage, P. C. (2015, August 6). The evolution of ransomware. Retrieved from Symantec:
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepape
rs/the-evolution-of-ransomware.pdf

Lau, H. (2012, 04 26). Trojan.Dropper. Retrieved from Symantec:
https://www.symantec.com/security_response/writeup.jsp?docid=2002-082718-3007-99

Lord, N. (2012, October 12). Common Malware Types: Cybersecurity 101. Retrieved from VeraCode:
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101

Malwarebytes. (2017, 09 06). Payload. Retrieved from Malwarebytes:
https://blog.malwarebytes.com/glossary/payload/

Malwarebytes Labs. (2016, 06 9). Trojan Dropper. Retrieved from Malwarebytes:
https://blog.malwarebytes.com/threats/trojan-dropper/

Microsoft. (2017, 04 11). Access Control Lists. Retrieved from MSDN:
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374872(v=vs.85).aspx

nhinkle#. (2010, November 11). What's the difference between an Application, Process, and Services?
Retrieved from SuperUser: https://superuser.com/questions/209654/whats-the-difference-
between-an-application-process-and-services

Piscitello, D. (2016, February 18). What is Privilege Escalation? Retrieved from ICANN:
https://www.icann.org/news/blog/what-is-privilege-escalation

QNX. (n.d.). Remote and local attacks. Retrieved January 24, 2017, from QNX:
https://www.gnx.com/developers/docs/660/index.jsp?topic=%2Fcom.gnx.doc.neutrino.user
_guide%2Ftopic%2Fsecurity_Remote_Local.html

RedHat. (2017, 04 11). Chapter 20. Access Control Lists. Retrieved from RedHat.com:
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-acls.html

Regalado, D. (2017, January 11). New Variant of Ploutus ATM Malware Observed in the Wild in Latin
America. Retrieved from FireEye: https://www.fireeye.com/blog/threat-
research/2017/01/new_ploutus_variant.html

Schiffman, M. (2010, 02 15). A Brief History of Malware Obfuscation: Part 1 of 2. Retrieved from
Cisco:
https://blogs.cisco.com/security/a_brief_history_of _malware_obfuscation_part_1_of 2

Schiffman, M. (2010, 02 22). A Brief History of Malware Obfuscation: Part 2 of 2. Retrieved from
Cisco:
https://blogs.cisco.com/security/a_brief history_of malware_obfuscation_part 2 of 2

SentinelOne. (2016, May 11). Malware and Exploits: An Introduction to Two Prominent Attack
Vectors. Retrieved from SentinelOne: https://www.sentinelone.com/wp-
content/uploads/2016/05/MalwareVsExploit WP_051116.pdf

24

Sherr, I. (2017, 05 19). WannaCry ransomware: Everything you need to know. Retrieved from CNET:
https://www.cnet.com/news/wannacry-wannacrypt-uiwix-ransomware-everything-you-
need-to-know/

TechoPedia. (2017, 09 06). Payload. Retrieved from Techopedia:
https://www.techopedia.com/definition/5381/payload

Tend Micro. (2015, 06 24). ZEUS. Retrieved from Tend Micro:
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/zeus

University, M. A. (2008, May 13). 5. The Trojan War. Retrieved from Epos:
https://epos.wordpress.com/epic-poetry-lessons/5-the-trojan-war/

Urbelis, A. (2017, 05 14). WannaCrypt ransomware attack should make us wanna cry. Retrieved from
CNN: https://edition.cnn.com/2017/05/14/opinions/wannacrypt-attack-should-make-us-
wanna-cry-about-vulnerability-urbelis/index.html

US Government. (2017, 05 19). Indicators Associated With WannaCry Ransomware. Retrieved from
US-CERT: https://www.us-cert.gov/ncas/alerts/TA17-132A

Williams, C. (2016, November 27). Passengers ride free on SF Muni subway after ransomware infects
network, demands S73k. Retrieved from The Register:
https://www.theregister.co.uk/2016/11/27/san_francisco_muni_ransomware/

Yim, I. Y. (2010). Malware Obfuscation Techniques: A Brief Survey. Retrieved from SemanticsScholar:
https://pdfs.semanticscholar.org/0401/3804edf3e86218d15868269a355dd3501c0f.pdf

25

