ANDROID MALWARE ANALYSIS

Decrypting two stages

Max ‘Libra’ Kersten

Table of Contents

T eChnNiCal INTOIMIATION ..ttt st st et sbe e s b e saae st eas 2
P I NI SSIONS . ettt b et sttt et e bt e b ettt e bbb e e nbeesae e et e enreen 2
FAYU el a gz R =Te M I=Tol gV ol Wl o FN OSSR 2

INOTES ...ttt ettt b e bt e s bt s ae e et e e bt e e bt e s bt e s at e et e e bt e bt e nbeeeaeeeareennean 3

YN o] TR =Tot B = TSP PR 3
Y o= [= RS 3
Y 0= [= R 4
ANti-NOOKING TUNCEIONAITY oot e eeeabar e e e e e eens 4
Decrypting the refleCtion CaAllS ... e e e e sranes 5
DECIYPEING The QSSEL oot e e e et e e e e s e essbraaeeeeeeseensaranes 6

(@] g Yol 15111 e] o IR 9

ADOUT TNE QUENON ettt st st b e be e s e e saeesateente s 10

ADPDPENAIX A ettt ettt e e e e e et e e e eebe e e e e tbaeeeatbaeeeaabaeeeatraeeeaabareeaanrareeenaraeeeeanrreas 11

(=11 o1 TTe e] =] 01 2 Y2 FEru R 13

Technical information

SHA-512 294180f000c5519345c8c33fdfc84d966f0ca7cd22cea0d21ffo8c098b366df2
be66b59b87bf19397404204f6748439e07Cc173ec46ee0ed07873ab7f39182d
cl

SHA-256 c52f628a6718c01d2131a3b6ef676bbde46504f2cab7f207dda95e3dba85f25
4

SHA-1 a0577222e464611390e418fe56179834bab96abe

MD-5 ca0a60770d6db6aa9fbb7ce2907bfob9

CRC32 DE036837

SSDeep 12288:uuwZJF6T3j4i0/8CjCHMIKg2ZCxjoYgooxJ7BJc:s96 XWSfKKBUtI

TonBJc

APK size: 459.5 kB (470526 bytes)
Package name: com.wbgsyas.gmhayacl
Application name: ebony_ fuck

Permissions
android.permission.CHANGE_NETWORK_STATE
android.permission.REAL_GET_TASKS
android.permission.RECEIVE_BOOT_COMPLETED
com.android.launcher.permission.UNINSTALL_SHORTCUT
android.permission.READ_CONTACTS
android.permission. WRITE_SMS
android.permission.ACCESS_WIFI_STATE
android.permission. ACCESS_NETWORK_STATE
android.permission. WAKE_LOCK
android.permission.GET__TASKS
android.permission.CHANGE_WIFI_STATE
android.permission.RECEIVE_SMS
android.permission.READ_PHONE_STATE
android.permission.INTERNET
android.permission.READ_PROFILE
android.permission. WRITE_EXTERNAL_STORAGE
android.permission.GET_ACCOUNTS
android.permission.READ_SMS

Automated decryption
For those interested in a proof-of-concept automated decryption tool for this

sample, | advise you to check out my Github repository.

https://github.com/ThisIsLibra/malwareDecryptionPoC-c52

Notes

The code itself is kept as close as possible to the decompiled code from the
malware itself. Refactoring is done due to garbage names, which results in
understandable names. These are created by the analyst, which’'d be me, and
not by the malware author.

Architecture

Stage 1
The malware itself contains two assets. The first asset is saved as a base64-
encoded string in the original application. Firstly, the base64 string is
decoded using the default base64 package in Android. The decoded value, a
byte[], is passed to the decrypt-function as byteArrayl. The second
argument that has to be passed to the decrypt function, is the key. This is a
hardcoded key, which equals "pgtgOgBeLbrMXbWPfPzUMEUF" .getBytes (). The
function itself swaps bytes around and eventually returns the decrypted byte[].
bytelArrayl,
o Arrayl.leng

1l = new Long
for (int i = 0; i < bytehArrayl.length; ++1i)

Long 12:;

output [1] I } (byvteArrayl[i] ©~ bytelrravZ[(int)

1 = 12 = Long + 1):

if (12 <« hytehrrayZ.length)

continue;

1 = new Long(J):

return output;

The output is then written to the files directory of the context: new
File (context.getFilesDir (), "pzJDrFMdboF.zip");

The written file is then loaded using the DexClasslL.oader, after which the
constructor of the class “ntnhrhp/fggxpa’ is invoked. Directly afterwards, the
function attachBaseContext is called with the current context provided as
argument. Any error will simply return, after which the “onCreate” method will
return due to the given try-catch structure, resulting in the application to
exit. Starting the application again will initiate the process described above.

Stage 2

Anti-hooking functionality

The reason the malware did not run in my virtual environment was because of
a function that threw an exception. In the stacktrace of this exception,
multiple checks for hooking frameworks were done, as can be seen in the figure
below.

ackTraceElement. get () ("c && (localStackTraceElement.getMethodName () .equals (i

return new File

The result of this function is a boolean, which is true if any of the frameworks
is detected. Based on the result of the boolean, another action is performed,
as is shown in the figure below.

illProcess (Proc

() .getDeclaredMethod (decryptString ("LE G™), new Class[0]) .invoke (this, new Object[0]}):

catch (Exception paramContext)

If the checkForHooks method returns true, the application terminates itself.
Otherwise, it simply continues.

Decrypting the reflection calls

The second stage was also encrypted in a similar way, yet this one was much
harder to decrypt. Both the stages used Java reflection to call functions. This
time, the code was slightly different. Each of the strings used in the reflection
calls, was encrypted. The method used to decrypt the strings was included in
the class, as can be seen in the figure below.

The creation of the new Stringbuilder is irrelevant, since it does nothing.
The value that the toString () method returns is not saved nor used
anywhere. This is garbage code. The next line is the important part of the
function.

At first, the ““decodeBase64’” method is called. This method is merely a
wrapper for the default base64 package, which contains a decode function. In
Android applications, a second argument is required upon decoding base64. A
‘0’ or DEFAULT as enum equals normal decoding. This wrapper returns the
value of the normal base64 decode function with a “0" as second argument.
The value that it returns, is a byte[]. The next function that is called, is the
xorFunction. This function can be seen in the figure below.

[] paramArrayOfByrel)

) (paramArrayOfBytel[i] © paramArrayOfByteZ[(i % paramArrayOfByteZ.length)])):

return array0OfByte;

The first argument, called paramArrayOfBytel, is equal to the decoded base64
string. The second byte[] is the key used in the decryption process. This is
the simpleClassName of the current class, which equals "fggxpa".getBytes ().
The class name was both visible in the Java code of this stage and in the code
to load stage 2. The returned value of this is another byte[]. Upon creating a
new string with said byte[], the decrypted text is retrieved.

Decrypting the asset

After reading and refactoring the code, | found that an asset that was present
in the APK from the start was loaded and used. The function, named
“HwKdwuyZa' couldn't be decompiled at first. Using another online decompiler, |
retrieved the Java code. Due to efficient optimising and good usage of a few
variables of the type Object, some variables were used as multiple types
throughout the method, which made it harder to understand the code.

Using the asset manager, an asset hamed “jzRNvE" was read and stored into a
byte[]. This was confusing at first, because the “Read” method of an
InputStream returned an integer, which was neglected. Only after reading the
Javadoc, | found out that the bytes that were read, were put in the given
byte[]: the one that was used as an argument in the read method.

The byte[] with the content is then passed to the decrypt function, which can
be seen in the figure below.

[1 decrypt (byte[] paramhrray0fByte) {

ramArray0fByte;

rayToStringMutator (signatureBytes) .getBytes ()

utput = xorFunction {(valus,

This method is refactored to use comprehensible names and contains no Java
reflection methods. At first, the Java-class Signature of the application is
obtained. Because of the absence of a test phone, the only way to obtain the
signature was to recreate it based on the given certificate in the APK. The
RSA-certificate is located in the APK at “/META-INF/726793.RSA". Then, one
needs to extract the file and save it with the same name and extension.
Assuming you're using a Linux distribution, you can use the terminal to use
“openssl”. The complete command is “openssl pkcs7 -in 726793.RSA -
inform DER -print certs -out 726793.RSA.raw”. Then, one needs to open
the newly created “726793.RSA.raw” file with a text editor and remove
everything but the base64 encoded parts. Save this file as
“726793.RSA.encoded’”. Then, decode the file using the command "base64 -d
./726793.RSA.encoded > 726793.sig".

The content in the file *726793.sig"”, is the one that is used in the malware.
The standard Java base64 decoder is not able to decode the given base64,
even though the Android version is able to do so. I'd like to thank Khaled
Nassar for helping me out when | was stuck on this part.

Another method, one which requires a test phone, is to write another Android
application which is also installed on the infected device. Requesting the
signature of another application is possible with a given package name. The
package name of the malware is known in the AndroidManifest.xml, which
means that we can read the signature and write it to the internal memory of
the phone. This can be done using the proof-of-concept provided in Appendix
A.

The signature is mutated to create the key, using the function
“byteArrayToStringMutator” function, which can be found in the figure
below.

S5tring bytehArrayToStringMutato e[] paramBrrayOfByte) {

i)) .digest (paramArrayOfByte)

r.toHexS5tring (paramfArray0fByte[i] & } .substring (1,

ffer.toString ()

return ""

The provided byte[], the key, is decrypted here using the MD-5 hash and
some other security through obscurity. Understanding the concept was all that
was needed to copy and paste this method, even though it is always better to
have a more in-depth insight in what method does.

The return value is a string, of which the bytes are saved in a byte[].

The value and the key are then used in another “xorFunction”, which can be
seen in the figure below.

PT ancti [] paramArrayOfByte2) {

rray0fBytel[i] * paramArrayOfByteZ[(i ramArray0fByteZ.length

return arrayOfByte;

The value that is returned after the decryption process is complete, is the
decrypted ““classes.dex” file. This file is then put in a ZIP-folder and is
written to “getFilesDir () + Separator + “cls.dex”'.

Using dex2jar (Pan, 2017), one can transform a dex-file to a JAR-file. Using
JD-GUI (Dupuy, 2017), one can decompile a JAR-file to Java source code.
These two stages were the decryption of both protection mechanisms that
were put in place by the malicious author to evade antivirus suites and reverse

engineers.

Conclusion

The two stages evade common dynamic analysis tools and might confuse
reverse engineers. Even though some clever tricks are used, the original source
code is recovered in the end. The techniques that were used from time to time
were new to me, such as the exception that is thrown to check for a hooking
frameworks. This gives me new insights for future usage.

About the author

My name is Max ‘Libra’ Kersten and | have an interest in offensive security. To
stop current and future attacks, one should think like an attacker. The anti-
virus and anti-malware branches will always be too late to stop malware from
infecting users. By anticipating what the malicious coders might do, the delay
can be minimised.

10

Appendix A

Note that the application itself should have the permission to both READ and
WRITE on the external store (SD-card) of the device. This is a prerequisite for
the code to work. Additionally, the string named ‘packageName’ should contain
the name of the package which signature you want to extract. Note that every
signature is written with the same name on the SD-card, so any previous
versions of a signature are overwritten. The way to request the read and write
permission might not work on newer versions of the Android platform, due to
changes every so often, the newest way is not present in the code.

@Override
protected void onCreate (Bundle savedInstanceState) {
//Default code
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

//Initialise the array with a length of 10, which we wont

use
Signature[] signatures = new Signature[10];
String packageName = "com.example.class";
try f{
signatures =

getPackageManager () .getPackageInfo (packageName,
PackageManager.GET SIGNATURES) .signatures;
} catch (PackageManager.NameNotFoundException e) {
e.printStackTrace() ;
}
if (signatures.length > 0) {
Signature signature = signatures[0];
byte[] byteArray = signature.toByteArray():;
InputStream inStream = new
ByteArrayInputStream (byteArray);
FileOutputStream fos = null;
String path = Environment.getExternalStorageDirectory ()
+ File.separator + "signature.sig";
try {
fos = new FileOutputStream(path);
} catch (FileNotFoundException e) {
Toast.makeText (this, "FileNotFound error",
Toast.LENGTH LONG) .show () ;
e.printStackTrace() ;

}

int b;
byte[] d = new byte[4096];
try {
while ((b = inStream.read(d)) != -1) {

fos.write(d, 0, b);

11

Toast.makeText (this, "Writing finished to
Toast.LENGTH LONG) .show () ;
} catch (IOException e) {
Toast.makeText (this, "Error writing",
Toast.LENGTH LONG) .show () ;
e.printStackTrace () ;
}
} else {
Toast.makeText (this, "No signatures found!",
Toast.LENGTH SHORT) .show () ;
}

:" + path,

12

Bibliography
Dupuy, E. (2017, 10 30). Java Decompiler. Retrieved from jd.benow.ca:
http://jd.benow.ca/

Pan, B. (2017, 10 30). Tools to work with android .dex and java .class files.
Retrieved from Github: https://github.com/pxb1988/dex2jar

13

